The Songnen Plain is a significant region in China, known for its high grain production and concentrated distribution of soda saline land. It is also considered a priority area for cropland development in the country. However, the Songnen Plain is now facing prominent issues such as soil salinization, soil erosion, and deteriorating cropland quality, which are exacerbated by climate change and intensified human activities. In order to address these challenges, it is crucial to adjust the quantitative structure and layout of different landscapes in a harmonious manner, aiming to achieve synergistic optimization, which is posed as the key scientific approach to guide comprehensive renovation policies, improve saline–alkaline land conditions, and promote sustainable agricultural development. In this study, four scenarios including natural development, priority food production (PFP), ecological security priority (ESP), and economic–ecological-balanced saline soil improvement were set up based on Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Future Land Use Simulation (FLUS) model. The results demonstrated that the SSI scenario, which focused on economic–ecological equilibrium, displayed the most rational quantitative structure and spatial layout of landscape types, with total benefits surpassing those of the other scenarios. Notably, this scenario involved converting unused land into saline cropland and transforming saline cropland into normal cropland, thereby increasing the amount of high-quality cropland and potential cropland while enhancing the habitat quality of the region. Consequently, the conflict between food production and ecological environmental protection was effectively mitigated. Furthermore, the SSI scenario facilitated the establishment of a robust ecological security and protection barrier, offering valuable insights for land use planning and ecological security pattern construction in the Songnen Plain, particularly in salt-affected areas.
Read full abstract