BackgroundTranscranial direct current stimulation (tDCS) is a safe, accessible, and promising therapeutic approach for obsessive-compulsive disorder (OCD). AimsThis study aimed to evaluate the effect of tDCS on electroencephalography (EEG) microstates and identify potential biomarkers to predict efficacy. MethodsA total of 24 individuals diagnosed with OCD underwent ten sessions of tDCS targeting the orbitofrontal cortex, while 27 healthy individuals were included as controls. Microstates A, B, C, and D were extracted before and after tDCS. A comparative analysis of microstate metrics was performed between the OCD and the healthy control groups, as well as within the OCD group before and after tDCS. Multiple linear regression analysis was performed to identify potential biomarkers of tDCS. ResultsComparison to healthy controls, the OCD group exhibited a significantly reduced duration of microstate A and increased occurrence of microstate D. The transition between microstates A and C was significantly different between patients with OCD and healthy controls and was no longer observed following tDCS. Multiple linear regression analysis revealed that the duration of microstate C was associated with an improvement OCD symptom after tDCS. ConclusionsThe results revealed an aberrant large-scale EEG brain network that could be modulated by tDCS. In particular, the duration of EEG microstate C may be a neurophysiological characteristic associated with the therapeutic effects of tDCS on OCD.
Read full abstract