Rice paddy has been the main source of anthropogenic methane (CH4) emissions, with significant variations among rice varieties. 2-Acetyl-1-pyrroline (2-AP) is the key component of the pleasant aroma in fragrant rice. Here, we show that fragrant rice is metabolically active in nitrogen assimilation and exhibits high levels of 2-AP and that CH4 fluxes at the booting stage and cumulative emissions are 25.5% and 14.8% lower, respectively, in fragrant rice paddies compared with nonfragrant rice paddies. Three precursors involved in 2-AP synthesis-proline, glutamic acid, and ornithine-are identified as crucial nitrogen compounds that significantly promote CH4 oxidation in the rhizosphere. Augmenting 2-AP synthesis, either through foliar spraying or by utilizing CRISPR-Cas9 technology to generate knockout lines of BETAINE ALDEHYDE DEHYDROGENASE 2 gene, effectively enhances CH4 oxidation and reduces CH4 fluxes. Our findings reveal that the 2-AP metabolic pathway coordinates the carbon/nitrogen cycle to improve nitrogen assimilation along with high 2-AP levels and mitigate CH4 emissions in paddy ecosystems.