"The paper discusses the influence of mechanical factors on the performance and aging process of rocking machines, specifically focusing on oilfield equipment such as the downhole rod pump jack. The authors emphasize the importance of analyzing the condition and aging process of oilfield equipment to ensure reliability, safety, and efficiency in oil production processes. The mechanical factors discussed in the paper include vibrations, loads, wear, and corrosion. Vibrations can be caused by improper balance, bearing failures, or other factors, and they have a negative impact on equipment performance and can lead to breakdowns. High mechanical loads associated with raising and lowering sucker rods can cause wear and damage to the pump jack. Operating in harsh environments with sand, abrasive particles, or chemicals can also cause wear on surfaces and equipment parts. Corrosion of metal components can occur due to moisture, chemical attack, or improper storage and maintenance, leading to deterioration and breakage of equipment. The consequences of these mechanical factors on the aging of an oil pump jack include accelerated aging, decreased performance, and an increased risk of accidents. Continuous exposure to vibration, stress, wear, and corrosion accelerates the aging process, resulting in deterioration and reduced equipment life. Damage and breakdowns caused by mechanical factors lead to decreased efficiency, negatively impacting oil production processes. Moreover, insufficient maintenance and failure to address mechanical influences increase the risk of accidents, downtime, and damage to other parts of the manufacturing process. To assess the health and aging status of an oil pump jack, various analysis and diagnostic methods are used, including visual inspection, strength testing, monitoring of parameters, and non-destructive testing. Visual inspection helps identify visible damage, wear, and defects. Strength testing evaluates the reliability of pump jack parts and identifies potential issues. Monitoring parameters like vibrations, temperature, and pressure allows for detecting deviations from normal operation and preventing breakdowns. Non-destructive testing methods such as ultrasonic testing, magnetic particle testing, and radiography help identify hidden defects and damage. The authors recommend several strategies to maintain the reliability and efficiency of an oil pump jack. These strategies include implementing a preventive maintenance program with regular inspection, testing, and parts replacement based on manufacturer’s recommendations and equipment condition analysis. Determining optimal service and part replacement intervals based on historical data, monitoring results, and manufacturer’s recommendations is crucial. Additionally, utilizing more durable materials, anti-corrosion coatings, improved designs, and technologies can increase equipment resistance to mechanical stress and improve performance. The paper also describes the device and components of a pump jack, such as the installation base, platform, balancer, electric motor, crank, connecting rod, and control station. It emphasizes the importance of considering various characteristics when selecting and evaluating the effectiveness of a pump jack, including working load, maximum plunger stroke, reducer dimensions, output torque, and swing frequency. The kinematics of the pump jack drive system are discussed, highlighting the need for reconfiguration to adapt to changing operating conditions and optimize oil production performance. Overall, the paper emphasizes the importance of analyzing mechanical factors, managing the aging process, and implementing maintenance strategies to ensure the reliable and efficient operation of oilfield equipment, specifically the pump jack used in oil production processes.
Read full abstract