The characterization of non-retroviral integrated RNA virus sequences (NIRVS) in mosquitoes has emerged as a significant area of research that could yield insight into virus-host interactions. This study aimed to characterize NIRVS in the Anopheles darlingi reference genome and identify putative transcribed NIRVS in field-collected mosquitoes from Colombia. The An. darlingi reference genome was analyzed to identify and characterize NIRVS by conducting a BLAST query with all the virus sequences previously identified in arthropods available in the NCBI-virus repository. In addition, An. darlingi field-collected mosquitoes were examined for NIRVS using a metatranscriptomic approach. As a result, 44 NIRVS were identified in the An. darlingi genome, constituting integrations of negative single-stranded RNA viruses (ssRNA-) from the families Rhabdoviridae, Chuviridae and Phasmaviridae, and integrations of double-stranded RNA viruses (dsRNA) from the families Partitiviridae and Sedoreoviridae. These NIRVS were not randomly distributed but clustered in specific regions of the genome enriched with BEL/Pao and Ty3/Gypsy long terminal repeat elements. Furthermore, putative NIRVS-like sequences were present in the transcriptomic data from all the Colombian An. darlingi natural populations. This study is significant as it represents the first identification of NIRVS in the most important malaria vector of the Neotropics. The findings help in understanding the intricate relationship between the mosquito and its virome, and the regulation of viruses' mechanisms in the Anopheles genus.
Read full abstract