Abstract The phase-field system is a nonlinear model that has significant applications in material sciences. In this paper, we are concerned with the uniqueness of determining the nonlinear energy potential in a phase-field system consisted of Cahn-Hilliard and Allen-Cahn equations. This system finds widespread applications in the development of alloys engineered to withstand extreme temperatures and pressures. The goal is to reconstruct the nonlinear energy potential through the measurements of concentration fields. We establish the local well-posedness of the phase-field system based on the implicit function theorem in Banach spaces. Both of the uniqueness results for recovering time-independent and time-dependent energy potential functions are provided through the higher order linearization technique.