The field of reproductive biology has made significant progress in recent years, identifying specific molecular players that influence oocyte development and function. Among them, sirtuin 3 (SIRT3) has attracted particular attention for its central role in mediating mitochondrial function and cellular stress responses in oocytes. So far, studies have demonstrated that the knockdown of SIRT3 leads to a decrease in blastocyst formation and an increase in oxidative stress within an embryo, underscoring the importance of SIRT3 in maintaining the cellular redox balance critical for embryonic survival and growth. Furthermore, the literature reveals specific signaling pathways, such as the SIRT3- Glycogen synthase kinase-3 beta (GSK3β) deacetylation pathway, crucial for mitigating oxidative stress-related anomalies in oocyte meiosis, particularly under conditions like maternal diabetes. Overall, the emerging role of SIRT3 in regulating oocyte mitochondrial function and development highlights the critical importance of understanding the intricate connections between cellular metabolism, stress response pathways, and overall reproductive health and function. This knowledge could lead to the development of novel strategies to support oocyte quality and fertility, with far-reaching implications for assisted reproductive technologies and women's healthcare. This commentary aims to provide an overview of the importance of SIRT3 in oocytes by synthesizing results from a multitude of studies. The aim is to elucidate the role of SIRT3 in oocyte development, maturation, and aging and to identify areas where further research is needed.
Read full abstract