The blood-brain barrier (BBB) is an extensive capillary network that protects the brain from environmental and metabolic toxins while limiting drug delivery to the central nervous system (CNS). The ATP-binding cassette transporter breast cancer resistance protein (Bcrp) reduces drug delivery across the BBB by actively transporting its clinical substrates back into peripheral circulation before their entry into the CNS compartment. 17β-Estradiol (E2)-elicited changes in Bcrp transport activity and expression have been documented previously. We report a novel signaling mechanism by which E2 decreases Bcrp transport activity in mouse brain capillaries via rapid nongenomic signaling through estrogen receptor α. We extended this finding to investigate the effects of different endocrine-disrupting compounds (EDCs) and selective estrogen receptor modulators (SERMs) on Bcrp transport function. We also demonstrate sex-dependent expression of Bcrp and E2-sensitive Bcrp transport activity at the BBB ex vivo. This work establishes an explanted tissue-based model by which to interrogate EDCs and SERMs as modulators of nongenomic estrogenic signaling with implications for sex and hormonal regulation of therapeutic delivery into the CNS.