Retinal prosthetic devices aim to repair some vision in visually impaired patients by electrically stimulating neural cells in the visual system. Although there have been several notable advancements in the creation of electrically stimulated small dot-like perceptions, a deeper comprehension of the physical properties of phosphenes is still necessary. This study analyzes the influence of two independent electrode array topologies to achieve single-localized stimulation while the retina is electrically stimulated: a two-dimensional (2D) hexagon-shaped array reported in clinical studies and a patented three-dimensional (3D) linear electrode carrier. For both, cell stimulation is verified in COMSOL Multiphysics by developing a lifelike 3D computational model that includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. The evoked percepts previously described in clinical studies using the 2D array are strongly associated with our simulation-based findings, allowing for the development of analytical models of the evoked percepts. Moreover, our findings identify differences between visual sensations induced by the arrays. The 2D array showed drawbacks during stimulation; similarly, the state-of-the-art 2D visual prostheses provide only dot-like visual sensations in close proximity to the electrode. The 3D design could offer a technique for improving cell selectivity because it requires low-intensity threshold activation which results in volumes of stimulation similar to the volume surrounded by a solitary RGC. Our research establishes a proof-of-concept technique for determining the utility of the 3D electrode array for selectively activating individual RGCs at the highest density via small-sized electrodes while maintaining electrochemical safety.
Read full abstract