ABSTRACT Navigational abilities decline with age, but the cognitive underpinnings of this cognitive decline remain partially understood. Navigation is guided by landmarks and self-motion cues, that we address when estimating our location. These sources of spatial information are often associated with noise and uncertainty, thus posing a challenge during navigation. To overcome this challenge, humans and other species rely on navigational cues according to their reliability: reliable cues are highly weighted and therefore strongly influence our spatial behavior, compared to less reliable ones. We hypothesize that older adults do not efficiently weigh spatial cues, and accordingly, the reliability levels of navigational cues may not modulate their spatial behavior, as with younger adults. To test this, younger and older adults performed a virtual navigational task, subject to modified reliability of landmarks and self-motion cues. The findings revealed that while increased reliability of spatial cues improved navigational performance across both age groups, older adults exhibited diminished sensitivity to changes in landmark reliability. The findings demonstrate a cognitive mechanism that could lead to impaired navigation abilities in older adults.
Read full abstract