This study assessed the mechanical performance of porous asphalt mixtures, specifically the porous friction course (PFC), incorporating 10% Reclaimed Asphalt Pavement (RAP) and rubberized asphalt. Three different methods were investigated to evaluate the stiffness of the mixtures: the resilience modulus (RM) test at a single temperature and loading frequency, the complex modulus |E*| test from compressive loading conducted at various temperatures and frequencies, and the impact resonance (IR) tests performed at three temperatures with five impacts applied to the mixture. The results demonstrated that the RAP-containing mixture exhibited a higher resilience modulus at all tested temperatures, indicating greater stiffness compared to the mixture without RAP. Additionally, the IR and |E*| tests revealed similar behavior between the two evaluated mixtures. These findings suggest that both quasi-static and vibrational tests are suitable for characterizing the stiffness of porous asphalt mixtures due to the similarity in the viscoelastic parameters of the two investigated mixtures. This study provides important insights into the practical and scientific application of recycled and modified materials in porous asphalt mixtures.
Read full abstract