Fire is a common practice in rotational shifting cultivation (RSC), but little is known about the dynamics of bacterial populations and the impact of fire disturbance in northern Thailand. To fill the research gap, this study aims to investigate the dynamics of soil bacterial communities and examine how the soil's physicochemical properties influence the bacterial communities in RSC fields over a period of one year following a fire. Surface soil samples (0-2 cm depth) were collected from sites with 6 (RSC-6Y) and 12 (RSC-12Y) years of fallow in Chiang Mai Province, northern Thailand at six different time points: before burning, 5 min after burning (summer), 3 months after burning (rainy season), 6 months after burning (rainy season), 9 months after burning (winter), and 12 months after burning (summer). The results revealed a reduction in the soil bacterial communities' diversity and an increase in soil nutrient levels immediately after the fire. The fire significantly influenced the abundance of Firmicutes, Proteobacteria, Acidobacteria, and Planctomycetes, but not that of Actinobacteria. At the genus level, Bacillus, Conexibacter, and Chthoniobacter showed increased abundance following the fire. During the rainy season, a recovery in the abundance of the soil bacterial communities was observed, although soil nutrient availability declined. Soil physicochemical properties such as pH, organic matter, organic carbon, electrical conductivity, cation exchange capacity, nitrate-nitrogen, available phosphorus, exchangeable potassium, total nitrogen, bulk density, sand, and silt contents significantly influenced the composition of bacterial communities. Alpha diversity indices indicated a decrease in diversity immediately after burning, followed by an increase from the early rainy season until the summer season, indicating that seasonal variation affected the composition of the soil bacterial communities. After one year of burning, an increase in bacterial richness was observed, while the diversity of the bacterial communities reverted to pre-burning levels.
Read full abstract