This paper reports an experimental study focused on the impact of chevrons (serrations on the trailing edge of the nozzle) on the mixing process of an incompressible jet issuing from a convergent nozzle. The study also explores enhancement of the mixing performance by a novel approach to geometry modification. Profiles of mean velocity were used to characterize the extent of mixing. For a comparative assessment, studies were carried out with a base line circular nozzle, a conventional chevron nozzle and an improvised tabbed chevron nozzle. Flow visualization studies were carried out for jets issuing from chevron nozzles and the results corroborate well with quantitative measurements. The impact of confinement on mixing of jets issuing from chevron nozzles is also studied. The results show that the proposed geometry modification can significantly improve the rate of mixing in the range of Reynolds numbers considered in the study. In confined jets, presence of chevrons was found to accelerate the process of jet break-down.
Read full abstract