The impact of atmospheric deposition and environmental factors on catchment processes and water chemistry of 20 high-altitude Alpine lakes in Southern Switzerland was investigated over four decades. Through the analysis of input-output budgets of sulphur (S), nitrogen (N), base cations and alkalinity significant trends emerged. Notably, S and N input concentrations significantly declined since the 1980s, by approximately 78 % and 22 %, respectively, with N primarily declining after 2000. Recovery from acidification was slightly delayed, likely due to the increased release of S, possibly originating from legacy S pools, alongside the simultaneous reduction in leaching of base cations from exchange sites. Catchments heavily impacted by thawing cryospheric features increasingly released S and base cations due to enhanced weathering processes, with hardly any impact on the recovery process, as evidenced by the balanced releases of S and base cations. N output concentrations followed the decrease of N input concentrations, while the relative N retention in the catchments remained relatively stable. Recently, both input concentrations of S and N have stabilised, while output concentrations of base cations began to increase across all catchments. The trend likely arises from the stabilisation of S and N input concentrations and/or the ongoing increase in weathering rates induced by climate change. Consequently, there was a consistent rise in alkalinity output concentrations even after the stabilisation of the S and N input concentrations. Ion ratio analysis suggests that carbonation primarily drives weathering processes in catchment areas unaffected by thawing cryosphere, while in areas impacted by thawing cryosphere, sulphide oxidation (or sulphate dissolution) is the dominant process. Further recovery depends on future N deposition and the effects of climate change.
Read full abstract