AimTo investigate the immunomodulatory potential of a chimera composed of the receptor-binding domain of hemagglutinin 1 (H1s) from Influenza virus and Der p 2 (D2) allergen for allergen-specific immunotherapy of house-dust mite allergy (HDM). Main methodsH1sD2 chimera and D2 allergen were produced by genetic engineering in E. coli. Recombinant antigens were extracted from inclusion bodies by urea, then refolded and purified by immobilized- metal affinity chromatography (IMAC). Purity was verified by 2D-PAGE and secondary structures were assessed by CD spectroscopy. IgE reactivity of H1sD2 and D2 was tested in western blot with sera from 8 persons with clinical history of HDM allergy. Immunogenicity of H1sD2 and D2 were analyzed in Balb/c mice. Cytokine profile was analyzed by ELISA after stimulation of mouse spleen cells with H1sD2 and D2. Leukocyte population abundance of cells isolated from spleen and lymph node was assessed by flow cytometry. Key findingsPurified recombinant proteins H1sD2 (42 kDa) and D2 (15 kDa) revealed well defined secondary structures, and preserved IgE reactive epitopes. Analysis of supernatants of mouse spleen cells after stimulation with H1sD2 and D2, revealed a qualitatively different cytokine profile from H1sD2 immunized mouse cells (increase in IL10). CD8+ cells were decreased in the lymph node of D2 immunized mice, whereas H1sD2 immunization led to an increase of CD8+ cells in both the lymph node and the spleen. SignificanceH1sD2 chimera attenuates Der p 2-inherent Th2 response and directs the immune response toward Th1 and Treg phenotype.
Read full abstract