There is now evidence that, based on cytokine profiles, bipolar disorder (BD) is accompanied by simultaneous activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS), and that both components may be associated with the staging of illness. Nevertheless, no BD studies have evaluated the IRS/CIRS ratio using CD (cluster of differentiation) molecules expressed by peripheral blood activated T effector (Teff) and T regulatory (Treg) subpopulations. This study examined Teff/Treg subsets both before and after ex vivo anti-CD3/CD28 stimulation using flow cytometric immunophenotyping in 25 symptomatic remitted BD patients and 21 healthy controls and assessed human cytomegalovirus (HCMV)-specific IgG antibodies. BD is associated with a significantly lowered frequency of unstimulated CD3 + CD8 + CD71+ and CD4 + CD25 + FOXP3 and increased CD4 + CD25 + FOXP3 + CD152+ frequencies and with lowered stimulated frequencies of CD3 + CD8 + CD71+, CD4 + CD25 + FOXP3 + CD152+, and CD4 + CD25 + FOXP3 + GARP cells and, consequently, by an increased stimulated Teff/Treg ratio. Moreover, the number of manic, but not hypomanic or depressive episodes, is significantly and negatively associated with the stimulated proportions of CD3 + CD4 + CD154+, and CD69+ and CD71+ expression on CD4+ and CD8+ cells, while duration of illness (≥ 10 years) is accompanied by a depleted frequency of stimulated CD152+ Treg, and CD154+ and CD71+ CD4+ T cells. BD and anti-human cytomegalovirus (HCMV) IgG levels significantly interact to decrease the expression of CD4 + CD25 + FOXP+GARP T phenotypes. In conclusion, in BD patients, immune injuries, staging, and HCMV seropositivity interact and cause CIRS dysfunctions and exaggerated IRS responses, which play a key role in parainflammation and neuroaffective toxicity. HCMV seropositivity contributes to an immune-risk phenotype in BD.
Read full abstract