In this research work, dextranase has immobilized onto calcium alginate beads using a novel ultrasound method. The process of immobilization of the enzyme was carried out in a one-step ultrasound process. Effects of ultrasound conditions on loading efficiency and immobilization yield of the enzyme onto calcium alginate beads were investigated. Furthermore, the activity of the free and immobilized enzymes prepared with and without ultrasound treatment, as a function of pH, temperature, recyclability and enzyme kinetic parameters, was compared. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with an ultrasonic irradiation at 25kHz, 40W for 15min, under which the loading efficiency and the immobilization yield increased by 27.21% and 18.77%, respectively, compared with the immobilized enzymes prepared without ultrasonic irradiation. On the other hand, immobilized enzyme prepared with ultrasonic irradiation showed Vmax and KM value higher than that for the immobilized enzyme prepared without ultrasonic irradiation, likewise, both the catalytic and specificity constants of immobilized enzyme prepared with ultrasonic irradiation were higher than that for immobilized enzyme prepared without ultrasound, indicating that, this new ultrasonic method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared with immobilized enzyme prepared without ultrasound treatment, the immobilized enzymes prepared with ultrasound irradiation exhibited: a higher pH optimum, optimal reaction temperature, activation energy, and thermal stability, as well as, a higher recyclability, which, illustrating the effectiveness of the sonochemical method. To the best of our knowledge, this is the first report on the effect of ultrasound treatments on the immobilization of dextranase.
Read full abstract