In saline soil areas, the concrete piers of concrete bridges experience long-term corrosion, mainly caused by chloride salts due to alternating temperature changes. Waterborne concrete coatings are prone to failure in this aggressive salt environment. Implementing coating protection measures can improve the durability of concrete and enhance the service life of bridges. However, the effectiveness and longevity of coatings need further research. In this paper, three types of waterborne concrete anti-corrosion coatings were applied to analyze the macro and micro surface morphology under wet–dry cycles and long-term immersion conditions. Various indicators such as glossiness, color difference, and adhesion of the coatings were tested during different cyclic periods. The chloride ion distribution characteristics of the buried concrete coatings in saline soil, the macro morphology analysis of chloride ion distribution regions, and the micro morphology changes of the coatings under different corrosion times were also investigated. The results showed that waterborne epoxy coatings (ES), waterborne fluorocarbon coatings (FS), and waterborne acrylic coatings (AS) all gradually failed under long-term salt exposure, with increasing coating porosity, loss of internal fillers, and delamination. The chloride ion content inside the concrete decreased with increasing depth at the same corrosion time, while the chloride ion content at the same depth increased with time. The chloride ion distribution boundary in the cross-section of concrete with coating protection was not significant, while the chloride ion distribution boundary in the cross-section of untreated concrete gradually contracted towards the concrete core with increasing corrosion time. During the corrosion process in saline soil, the coatings underwent three stages: adherence of small saline soil particles, continuous increase in adhered material area, and multiple layers of uneven coverage by saline soil. The failure process of the coatings still required erosive ions to infiltrate the surface through micropores. The predicted lifespans of FS, ES, and AS coatings, obtained through weighted methods, were 2.45 years, 2.48 years, and 2.74 years, respectively, which were close to the actual lifespans observed in salt environments. The developed formulas effectively reflect the corrosion patterns of different resin-based coatings under salt exposure, providing a basis for accurately assessing the corrosion behavior and protective effectiveness of concrete under actual environmental factors.