Methine-bridged conjugated bicyclic aromatic compounds are common constituents of a range of biologically relevant molecules such as porphyrins, dipyrrinones, and pharmaceuticals. Additionally, restricted rotation of these systems often results in highly to moderately fluorescent systems as observed in 3H,5H-dipyrrolo[1,2-c:2',1'-f]pyrimidin-3-ones, xanthoglows, pyrroloindolizinedione analogs, BODIPY analogs, and the phenolic and imidazolinone ring systems of Green Fluorescent Protein (GFP). This manuscript describes an inexpensive and operationally simple method of performing a Claisen-Schmidt condensation to generate a series of fluorescent pH dependent pyrazole/imidazole/isoindolone dipyrrinone analogs. While the methodology illustrates the synthesis of dipyrrinone analogs, it can be translated to produce a wide range of conjugated bicyclic aromatic compounds. The Claisen-Schmidt condensation reaction utilized in this method is limited in scope to nucleophiles and electrophiles that are enolizable under basic conditions (nucleophile component) and non-enolizable aldehydes (electrophile component). Additionally, both the nucleophilic and electrophilic reactants must contain functional groups that will not inadvertently react with hydroxide. Despite these limitations, this methodology offers access to completely novel systems that can be employed as biological or molecular probes.
Read full abstract