Recent large-scale genomic studies established the occurrence of multiple DNA sequence variants in genomes of healthy individuals that differ from the reference sequence. Among these variants mostly represented by germline single nucleotide polymorphisms disease-related alleles are detected including alleles which are associated with monogenic disorders, and putative deleterious genetic variants. Apart from functional significance of a particular variant and of a gene harboring it, the penetrance of these allelic variants depends on their expression level and can be determined by preferential expression of a particular allele, or allele-specific expression. It is estimated that 20–30 % of genes present in the human genome display allelic bias in a tissue-specific manner. Allele-specific expression is defined by a range of genetic and epigenetic mechanisms including cis-regulatory polymorphisms, allele-specific binding of transcription factors, allele-specific DNA methylation and regulation through non-coding RNA. Although the data on the issue are scarce, allele-specific expression has been reported to be implicated in several hereditary disorders including benign and malignant tumors of the large intestine. Recent studies that estimate allele-specific expression incidence in tumors and identify wide range of genes displaying allelic imbalance indicate that allele-specific expression might play a significant role in carcinogenesis. Eventually, estimation of transcriptional rate of allelic variants which cause dysfunction of oncogenes and tumor suppressors may prove to be essential for rational choice of antitumor therapeutic strategy. In this review, we outline the main concepts and mechanisms of allele-specific expression and the data on allelic imbalance in tumors.