The emergent reconfigurable metasurfaces (RMs) have attracted a lot of attention due to their potential in broad applications. As a general platform, RMs are able to control the reflection (or refraction) of incident waves with predefined functionalities. Nevertheless, the operation of RMs is highly dependent on the arrival direction of incidence. The self-adaptive design of an RM, so that it can respond to varied incident waves automatically, is highly requested in practical implementation, which is actually challenging. This study reports the realization of an intelligent RM (IRM) system, which can detect the arrival direction of impinging waves and respond to the incidence with a predefined functionality accordingly. This IRM system is constructed by integrating a direction of the arrival estimation module, a frontend by the varactor-based metasurface, and a central control unit. In experiments, an IRM system designed for TM polarization is demonstrated to perform various functions, i.e., retroreflection, directional reflection, and fixed-point energy focusing, which are highly requested by edge communication and sensing. The measured results imply that this IRM system responds quite well within a wide incident range from -60° to 60° in a frequency range from 9 to 9.5 GHz. The proposed IRM can be a good candidate for boosting 5G communication and Internet of Things applications, including beam shaping/steering, RCS manipulation, object imaging, and sensor recharging.
Read full abstract