This study utilizes radiomics to explore imaging biomarkers for predicting the recurrence of chronic subdural hematoma (CSDH), aiming to improve the prediction of CSDH recurrence risk. Analyzing CT scans from 64 patients with CSDH, we extracted 107 radiomic features and employed recursive feature elimination (RFE) and the XGBoost algorithm for feature selection and model construction. The feature selection process identified six key imaging biomarkers closely associated with CSDH recurrence: flatness, surface area to volume ratio, energy, run entropy, small area emphasis, and maximum axial diameter. The selection of these imaging biomarkers was based on their significance in predicting CSDH recurrence, revealing deep connections between postoperative variables and recurrence. After feature selection, there was a significant improvement in model performance. The XGBoost model demonstrated the best classification performance, with the average accuracy improving from 46.82% (before feature selection) to 80.74% and the AUC value increasing from 0.5864 to 0.7998. These results prove that precise feature selection significantly enhances the model's predictive capability. This study not only reveals imaging biomarkers for CSDH recurrence but also provides valuable insights for future personalized treatment strategies.