The 10 August 2006 arrest in Britain of 24 terrorists bent on smuggling bomb components aboard airplanes and combining them en route is just the latest salvo in the Darwinian battle between developers of terrorist weaponry and those seeking to defeat them. The array of diabolical methods available to terrorists is truly terrifying, ranging from nuclear weapons and “dirty bombs” to biological and chemical weapons and explosives. Detection and assessment of terrorist threats is generally possible today with enough time, money, and laboratory equipment, but the ideal technology would be fast, accurate, cheap, easy to use, and portable or able to remotely detect threats, with an emphasis on prevention. No technology now exhibits all these virtues, but under the pressure of terrorists’ inventiveness, researchers are working steadily to develop and apply improved systems. Now researchers at Argonne National Laboratory are getting promising results from experiments using “T rays,” the terahertz (THz) part of the electromagnetic spectrum. In March 2006 Argonne announced that a research team there had shown for the first time that T rays can be used to identify explosives and poison gas precursors. The Argonne team also successfully used millimeter-wave radar to remotely detect airborne chemicals and the effects of radiation in the air. These results are currently being written up for publication. T rays and millimeter waves are at the low-energy end of the electromagnetic spectrum, between microwaves and infrared frequencies. According to Nachappa “Sami” Gopalsami, a senior electrical engineer at Argonne and a lead researcher on the THz sensor project, the general characteristics of T rays and millimeter waves are the same. “But,” he says, “new physics and phenomena are beginning to be explored as we move up in frequencies.” Although many detection techniques currently in use are based on electromagnetic radiation and mass spectrometry, T rays and millimeter waves have not previously been used in this context, mainly due to an inability to generate broadband pulses in these frequencies. In the Argonne experiments, however, THz spectrometry sensors provided unambiguous identification of explosive chemicals, including TNT and plastic explosives. Gopalsami says this method is “highly specific” and will eliminate interference from confounding elements. The Argonne team has been collaborating with researchers at Dartmouth College, Sandia National Laboratory, Sarnoff Corporation, and AOZT Finn-Trade of St. Petersburg, Russia. Funding has come from the U.S. Air Force, the Department of Energy, and the Department of Defense. But although national security imperatives are the driving force behind current research, many of the resulting technologies could also prove useful in environmental health applications. Being able to remotely detect and identify chemicals will be helpful in monitoring gas pipeline leaks, chemical plants, vehicle emissions, and the like. Gopalsami says the T ray technology can detect some of the most important environmental hazards including ozone, volatile organics, and cyanide compounds. Medical applications, particularly imaging techniques for body tissues and teeth, are also in the offing, especially because the THz zone is on the opposite end of the electromagnetic spectrum from X rays, and thus of lower energy and far less damaging to living tissue.