Evidence suggests that exposure to organophosphate pesticides increases the risk of neurodegenerative diseases, but the mechanisms remain unclear. This study investigated the effects of malathion on Alzheimer's disease (AD)-like symptoms at environmentally relevant concentrations using wild-type (WT) and APP/PS1 transgenic mouse models. Results showed that malathion exposure induced AD-like cognitive impairment, amyloid-β (Aβ) accumulation, and neuroinflammation in WT mice, with worsened symptoms in APP/PS1 mice. Mechanistic studies revealed that malathion induced AD-like gut microbiota dysbiosis (reduced Lactobacillus and Akkermansia, and increased Dubosiella), causing gut barrier impairment and tryptophan metabolism disruptions. This resulted in a significant increase in indole derivatives and activation of the colonic aryl hydrocarbon receptor (AhR), promoting the kynurenine (KYN) pathway while inhibiting the serotonin (5-HT) pathway. Increased neurotoxic KYN metabolites (3-hydroxykynurenine and quinolinic acid) triggered gut and systemic inflammation, upregulating hippocampal IL-6 and IL-1β mRNA levels and thereby causing neuroinflammation. Gut tryptophan metabolism disruptions caused hippocampal neurotransmitter imbalances, reducing the levels of 5-HT and its derivatives. These effects promoted AD progression in both WT and APP/PS1 mice. This study highlights the crucial role of the microbiota-gut-brain axis in AD-like cognitive impairment induced by malathion exposure, providing insights into the neurodegenerative disease risks posed by organophosphate pesticides.
Read full abstract