BackgroundThe aim of this study was to investigate the co-operative role of CXCR4/CXCL12 axis and IL-1Ra in metastatic processes mechanism by interactions between colorectal cancer cells and stromal cells in their microenvironment.MethodsExpression of IL-1α, interleukin-1 receptor type I (IL-1 RI), CXCL12 and CXCR4 mRNA and proteins were determined by RT-PCR and Western blot. The effect of secreted level of CXCL12 by IL-1Ra on fibroblasts was measured by ELISA. CXCL12 regulate metastatic potential of colorectal cancer was evaluated by proliferation, invasion and angiogenesis assays, respectively, in which invasion and angiogenesis assays used an in vitro system consisting of co-cultured colorectal cells and stromal cells.ResultsIL-1α was expressed in high liver metastatic colorectal cancer cell lines (HT-29 and WiDr). The colorectal cancer cell-derived IL-1α and rIL-1α significantly promoted CXCL12 expression by fibroblasts, and this enhancing effect can be significantly inhibited by IL-1Ra (P < 0.01). CXCL12 not only enhanced the migration and proliferation of human umbilical vein endothelial cells, but also significantly enhanced angiogenesis (P < 0.01). Furthermore, the high liver-metastatic colorectal cancer cell line (HT-29), which secretes IL-1α, significantly enhanced angiogenesis compared to the low liver-metastatic cell line (CaCo-2), which does not produce IL-1α (P < 0.01). On the contrary, IL-1Ra can significantly inhibit migration, proliferation and angiogenesis (P < 0.01).ConclusionAutocrine IL-1α and paracrine CXCL12 co-enhances the metastatic potential of colorectal cancer cells; IL-1Ra can inhibit the metastatic potential of colorectal cancer cells via decrease IL-1α/CXCR4/CXCL12 signaling pathways.Graphical 7Qx8An2hePDujdT1wSZV-LVideo