The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity. To understand the importance of IKKβ activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKβ activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKβ inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKβ, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKβ activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.