Magnesium (Mg2+ ) is a vasorelaxant. The underlying physiological mechanisms driving this vasorelaxation remain unclear. Studies were designed to test the hypothesis that multiple signaling pathways including nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in endothelial cells as well as Ca2+ antagonization and TRPM7 channels in vascular smooth muscle cells mediate Mg2+ -dependent vessel relaxation. To uncover these mechanisms, force development was measured exvivo in aorta rings from mice using isometric wire myography. Concentration responses to Mg2+ were studied in intact and endothelium-denuded aortas. Key findings were confirmed in second-order mesenteric resistance arteries perfused exvivo using pressure myography. Effects of Mg2+ on NO formation were measured in Chinese Hamster Ovary (CHO) cells, isolated mesenteric vessels, and mouse urine. Mg2+ caused a significant concentration-dependent relaxation of aorta rings. This relaxation was attenuated significantly in endothelium-denuded aortas. The endothelium-dependent portion was inhibited by NO and cGMP blockade but not by cyclooxygenase inhibition. Mg2+ stimulated local NO formation in CHO cells and isolated mesenteric vessels without changing urinary NOx levels. High extracellular Mg2+ augmented acetylcholine-induced relaxation. SKCa and IKCa channel blockers apamin and TRAM34 inhibited Mg2+ -dependent relaxation. The endothelium-independent relaxation in aorta rings was inhibited by high extracellular Ca2+ . Combined blockade of NO, SKCa , and IKCa channels significantly reduced Mg2+ -dependent dilatation in mesenteric resistance vessels. In mouse conductance and resistance arteries Mg2+ -induced relaxation is contributed by endothelial NO formation, EDHF pathways, antagonism of Ca2+ in smooth muscle cells, and additional unidentified mechanisms.