Unlike the well-studied and technologically advanced Group III-V and Group II-VI compound semiconductor alloys, alloys of ternary metal oxide semiconductors have only recently begun to receive widespread attention. Here, we describe the effect of alkaline earth metal substitution on the optical, electronic, and photoelectrochemical (PEC) properties of copper metavanadate (CuV2O6). As a host, the Cu-V-O compound family presents a versatile framework to develop such composition-property correlations. Alloy compositions of A0.1Cu0.9V2O6 (A = Mg, Ca) photoanodes were synthesized via a time and energy-efficient solution combustion synthesis (SCS) method. The effect of introducing alkaline earth metals (Mg, Ca) on the crystal structure, microstructure, electronic, and optical properties of copper metavanadates was investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and Raman spectroscopy. The PXRD, TEM, and Raman spectroscopy data demonstrated the polycrystalline powder samples to be mutually soluble, solid solutions of copper and alkaline earth metal metavanadates and not simple mixtures of these compounds. The DRS data showed a systematic decrease in the optical bandgap with Cu incorporation. These trends were corroborated by electronic band structure calculations. Finally, the PEC properties exhibited a strong dependence on the alloy composition, pointing to possible applicability in solar water splitting, heterogeneous photocatalysis, phosphor lighting/displays, and photovoltaic devices.
Read full abstract