Endometriosis presents diagnostic challenges, and there is a need for developing novel biomarkers with satisfactory specificity and sensitivity. Glycomics, exploring glycosylation changes in glycoproteins, offers potential solutions. The aim of this study was to analyze the carbohydrate-binding properties of IgG and IgM antibodies in the plasma and peritoneal fluid samples and to identify any differences in the presence and the specificities of anti-carbohydrate antibodies in the endometriosis patient and the controls. Multicenter study was conducted in Poland between 2018 and 2019. Plasma and peritoneal fluid samples were collected from women undergoing laparoscopic surgery. Endometriosis patients (n=8) and controls (n=8), matched for cycle phase and disease stage, were selected. The neoglycolipid-based oligosaccharide microarray system was used to investigate IgG and IgM antibody binding properties to glycan-related probes in biological materials. In peritoneal fluid samples, IgM binding to the following probes was significantly higher in endometriosis: GSC-915-4 (new), LNFP-I, NeuAcα-(6')LNnO (F1), B-like decaosylceramide, log10(GM1-penta), and log10(GSC-915-5). In a control group higher IgG binding to log10(Orsay-5-AO) was observed. In plasma samples, endometriosis showed higher IgG binding to log10(NeuAcα-(6')LNnO (F1)) and lower IgG binding to Gal2GlcNAc(1-3)-AO. After Benjamin-Hochberg correction, differences were not significant. Effect sizes highlighted some glycan probes in both plasma and peritoneal fluid. Strong correlations were observed among binding to certain glycan probes. This preliminary study suggests glycomics' potential contribution to endometriosis diagnosis and understanding of its pathophysiology. Neoglycolipid-based microarrays hold promise for non-invasive endometriosis diagnostic tools. Further investigations with larger cohorts are warranted to validate these findings and explore potential correlations with antibody levels in plasma and peritoneal fluid. Glycomics emerges as a valuable diagnostic asset in endometriosis research.
Read full abstract