BackgroundLeishmania is the causal parasite of leishmaniasis, a neglected tropical disease affecting millions of individuals worldwide, and its dissemination is linked to climate change. Despite the complexity and effectiveness of the immune response, the parasite has developed many strategies to evade it and take control of the host cell to replicate. These evasion strategies start at early stages of infection by hijacking immune receptors to mitigate the cellular response. In this study, we examined whether Leishmania uses the Fc receptor FcγRIIA/CD32a and its downstream signaling pathways to evade the host immune response.MethodsRegarding in vivo studies, CD32a transgenic mice and the corresponding wild types were infected with Leishmania major Friedlin strain. For the in vitro experiments, BMDMs isolated from WT or CD32a transgenic mice and control or CD32a knockdown differentiated THP-1s were infected with two species of Leishmania, Leishmania major and L. tropica.ResultsIn vivo, expression of FcγRIIA/CD32a was found to accelerate the signs of inflammation while simultaneously preventing the formation of necrotic lesions after Leishmania infection. In infected macrophages, the presence of FcγRIIA/CD32a did not affect the secretion of proinflammatory cytokines, while the balance between ITAMa and ITAMi proteins was disturbed with improved Fyn and Lyn activation. Unexpectedly, infection with L. tropica but not L. major triggered an intracytoplasmic processing of FcγRIIA/CD32a.ConclusionsOur observations underscore the significance of FcγRIIA/CD32a in cutaneous leishmaniasis and its potential use as a therapeutic target.Graphical
Read full abstract