The IFMIF Test Cell (TC) design was developed and optimized in the EVEDA phase, and finally the reference TC design was proposed. The present study is devoted to further investigations of open issues on the reference TC design. In order to examine the neutron streaming effect caused by pipe penetrations and gaps around removable shielding plugs, a new geometry model for neutronic analyses has been prepared directly from engineering CAD data by utilizing the McCad conversion software. All removable shielding plugs are separately described in the model and a detailed description of pipes was incorporated into the model. The calculation result suggests that the streaming effect is mitigated if the pipe penetration is designed appropriately, while the gaps around the shielding plugs above the TC have large impact on the radiation dose in the access cell. The concept of the reference TC design has been basically validated from the neutronics point of view, although the streaming effect should be compensated by the shielding capability of the test cell cover plate so that occupational workers can access to the access cell during operation.