This multidisciplinary research presents a comprehensive method to tackle the widespread problem of spice adulteration, which represents substantial risks to both public health and spices authenticity. A comprehensive approach is developed to authenticate spices with high accuracy and efficiency by combining old methods with contemporary approaches such as machine learning and artificial intelligence. This paper presents a specific case study where machine learning models, specifically using transfer learning with proven frameworks like MobileNetV2, were effectively employed. The models achieved an impressive accuracy of 98.67% in identifying Capsicum annum, a spice that is usually adulterated in the market. In addition, a wide range of traditional and advanced techniques, including qualitative testing, microscopy, colorimetry, density measurement, and spectroscopy, are reviewed closely. In addition, this article provides a detailed explanation of high-performance liquid chromatography based quantitation of capsaicin, which is the main active constituent for ascertaining the quality of C. annum. The present work defines a new interdisciplinary approach and also provides valuable information on evaluating the quality of spices and identifying adulterants using artificial intelligence. The outcomes presented here have the potential to completely transform the methods used to verify the authenticity of spices and herbal drugs, therefore ensuring the safety and health of consumers by confirming the quality.