This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm (M-AM-SGRPIA) for a class of single input single output (SISO) linear output error models with multi-threshold quantized observations. It proves the convergence of the designed algorithm. A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output (SIMO) or SISO nonlinear systems, and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system. The system input design is accomplished using the measurement technology of random repeatability test, and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable. A modified auxiliary model stochastic gradient recursive algorithm (M-AM-SGRA) is designed to identify the model parameters, and the contraction mapping principle proves its convergence. Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm.
Read full abstract