ObjectiveCancer is a complex genetic disease characterized by the accumulation of various mutations, with driver genes playing a crucial role in cancer initiation and progression. Distinguishing driver genes from passenger mutations is essential for understanding cancer biology and discovering therapeutic targets. However, the majority of existing methods ignore the mutational heterogeneity and commonalities among patients, which hinders the identification of driver genes more effectively. MethodsThis study introduces MCSdriver, a novel computational model that integrates network and pathway information to prioritize the identification of cancer driver genes. MCSdriver employs a bidirectional random walk algorithm to quantify the mutual exclusivity and functional relationships between mutated genes within patient cohorts. It calculates similarity scores based on a mutual exclusivity-weighted network and pathway coverage patterns, accounting for patient-specific heterogeneity and molecular profile similarity. ResultsThis approach enhances the accuracy and quality of driver gene identification. MCSdriver demonstrates superior performance in identifying cancer driver genes across four cancer types from The Cancer Genome Atlas, showing a higher F-score, Recall and Precision compared to existing ranking list-based and module-based models. ConclusionThe MCSdriver model not only outperforms other models in identifying known cancer driver genes but also effectively identifies novel driver genes involved in cancer-related biological processes. The model’s consideration of patient-specific heterogeneity and similarity in molecular profiles significantly enhances the accuracy and quality of driver gene identification. Validation through Gene Ontology enrichment analysis and literature mining further underscores its potential application value in personalized cancer therapy, offering a promising tool for advancing our understanding and treatment of cancer.
Read full abstract