High- and medium-entropy (HE and ME) materials have attracted considerable interest in recent years due to the advantages of designable components and tunable structures with modifiable physicochemical performances. Herein, a dense equiatomic quaternary (Ti,V,Nb,Ta)2AlC solid solution, or denoted as a medium-entropy MAX phase, was fabricated by in-situ reaction in hot-pressing sintering process using easily available elemental powders as raw materials. X-ray diffraction with its Rietveld refinement analysis, scanning electron microscope and high-resolution scanning transmission electron microscope equipped with energy-dispersed spectrometer analysis identify the phase composition and crystal structure of the novel ME-M2AlC (Ti,V,Nb,Ta)2AlC phase. Especially, the atomic-resolution HAADF images directly prove the mutual solution of four metallic elements of the ME (Ti,V,Nb,Ta)2AlC phase. Both the flexural strength and Vickers hardness are enhanced compared with the reported individual components, and the strengthening and hardening results largely benefit from solid-solution effect with lattice distortion in structure. The fracture toughness has not been enhanced due to the lack of effective toughening mechanism. Furthermore, the electrical conductivity of ME (Ti,V,Nb,Ta)2AlC ceramic is distinctly decreased as a result of the increasing carrier lattice scattering and point defect scattering, which is caused by severe lattice distortion. Similarly, the scattering effect of solid solutions is also responsible for the lower thermal conductivity. It is worth noting that size disorder parameter (δsize) is a more effective criterion to evaluate the reduced thermal conductivity than the ideal mixing configurational entropy itself. As a result, applying the medium- and high-entropy design to the MAX phases with chemical and structural diversity can provide a large compositional space with corresponding large range of unexpected performances, which is highly anticipated.
Read full abstract