As it is an ideal location for studying plume–ridge interactions, a clear image of the Icelandic upper mantle structure is necessary. We collect continuous seismic records from 164 stations and extract Rayleigh wave dispersion curves via the frequency-Bessel (F-J) transform method. Based on ambient noise tomography, we provide a new shear-wave velocity model of the Icelandic crust and uppermost mantle, extending to a depth of 120 km. The model is validated by the waveform simulation method and reveals extensive crustal low-velocity zones (LVZs) across both the neovolcanic and nonvolcanic zones of Iceland. These crustal LVZs may be attributed to elevated temperatures, partial melting, and lithological variations. A distinct LVZ beneath a depth of 60 km, mainly on the North American Plate, may correspond to Icelandic plume material. Additionally, hot plume material may be delivered to the crust through low-velocity conduits beneath the spreading mid-ocean ridge. There is a clear contrast between the uppermost mantle low-velocity zones (UMLVZs) in the western region and the uppermost mantle high-velocity zones in the eastern region, which may indicate asymmetric tectonic plates on both sides of the mid-ocean ridge. This asymmetry may be attributed to the multiple eastward jumps of the ridge systems. The eastern high-velocity body, meaning a cooler uppermost mantle than that of the western region, may act as a barrier to obstruct the eastward plume flow. Under plume–ridge interactions, plume material can affect crustal accretion and feed volcanic activity on the surface along the spreading Mid-Atlantic Ridge.