Hydrogeochemical research on fluids is an effective method to understand the formation mechanism, occurrence environment, and circulation process of groundwater. The groundwater sampling sites are located in the town of Dachaidan on the northeastern edge of the Tibetan Plateau, which was selected as the study object. Samples were collected from hot and cold springs and surface water in the area. This study is based on the analysis of water chemistry and isotopes, and aims (1) to discuss the chemical characteristics of groundwater in Da Qaidam, (2) to estimate the deep reservoir temperatures, recharge elevation and circulation depth of geothermal waters, and (3) to figure out the heat source beneath the geothermal area and its genetic mechanism. The result showed the following: The hydrochemical type of the hot spring is Cl·SO4-Na and Cl-Na, and the hydrochemical type of cold spring is SO4·HCO3-Na·Ca and Cl·HCO3·SO4-Ca·Na. The main source of groundwater recharge is snow and ice melt water. The recharge elevation ranges from 4666.8 m to 5755.9 m. The geothermal reservoir temperature is about 119.15–126.6 °C. Ice and snow melt water infiltrate into the high mountainous areas on the north side of Da Qaidam and circulate underground through the developed deep and large fractures. Part of the groundwater migrates upwards under the water conduction of the Da Qaidam fault fracture zone to form cold springs, while another part is heated by deep circulation and exposed to the surface in the form of medium to low temperature tectonic hot springs. The research results can provide a scientific basis for geothermal resource exploitation and utilization in Qinghai Province.
Read full abstract