Alterations in anion balance potential, along with the involvement of cation–chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury (PNI). Chloride voltage-gated channel 7 (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain (NP) has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns (SDHs) and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the SDHs and in small and medium-sized neurons located in the DRGs of spared nerve injury (SNI) mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating NP.
Read full abstract