Background and purposeThe intricate roles of NMDA receptors, specifically those containing the NR2A or NR2B subunit, in ischemic stroke pathology necessitate targeted therapeutic investigations. Building on our prior discovery showcasing the neuroprotective potential of 2-(benzofuran-2-yl)-2-imidazoline (2-BFI), an imidazoline I2 receptor ligand, in inhibiting NMDA receptor currents during ischemic stroke, this study aims to elucidate the specific impact of 2-BFI on NR2A- and NR2B-containing NMDARs. Experimental approachThrough whole-cell patch-clamp techniques, we observed an inhibition by 2-BFI on NR2A-containing NMDAR currents (IC50 = 238.6 μM) and NR2B-containing NMDAR currents (IC50 = 18.47 μM). Experiments with HEK293 cells expressing exogenous receptor subunits revealed a significantly higher affinity of 2-BFI towards NR2B-containing NMDARs. In vivo studies involved the co-administration of 2-BFI and the NR2A subunit antagonist NVP-AAM077 in rats subjected to transient middle cerebral artery occlusion (tMCAO).Key results2-BFI exhibited a pronounced preference for inhibiting NR2B-containing NMDAR currents, leading to a notable mitigation of cerebral ischemic injury when administered in conjunction with NVP-AAM077 in the tMCAO rat model. Furthermore, alterations in the expression of downstream proteins specific to NR2B-containing NMDA receptors were observed, suggesting targeted molecular effects.Conclusion and implicationsThis study unveils the neuroprotective potential of 2-BFI in ischemic stroke by selectively inhibiting NR2B-containing NMDA receptors. These findings lay the foundation for precise therapeutic strategies, showcasing the differential roles of NR2A and NR2B subunits and paving the way for advancements in targeted interventions for ischemic stroke treatment.
Read full abstract