Time course studies revealed that at 30 s after intraportal injection of 200 μU of 125I-labeled insulin per 100 g rat 47.9 ± 2.8% of the injected radioactivity was recovered from the liver homogenate by precipitation with trichloroacetic acid. Trichloroacetic acid precipitable radioactivity declined to very low levels during the next 30 min whereas trichloroacetic acid soluble radioactivity reached a peak value of 9.56 ± 1.9% at 5 min and declined gradually thereafter. At 30 s mean peak accumulations ±SE of 6.83 ± 0.42, 5.06 ± 0.27, 14.90 ± 1.85, and 3.58 ± 0.58% of injected radioactivity were recovered in trichloroacetic acid precipitates from the 700 g (nuclei + debris), 10,000 g (mitochondria + lysosome), 105,000 g (microsomes), and supernatant (cytosol) subfractions, respectively. Mean peak values of 0.72 ± 0.08, 0.12 ± 0.02, and 1.11 ± 0.16% of injected radioactivity were recovered in the partially purified mitochondrial fraction, purified nuclei, and plasma membranes, respectively, as trichloroacetic acid precipitable material. Most of the trichloroacetic acid precipitable activities in the subfractions were immunoprecipitable. Trichloroacetic acid soluble radioactivity was found mainly in the cytosol and microsomal fractions. Peak specific activity (percentage of injected dose/mg protein × 10 −3) was highest in the microsomes, intermediate in the plasma membranes, and very low in the purified nuclei and partially purified mitochondrial fraction. The specific activity of the microsomes remained at or near peak levels for 5 min after 125I-labeled insulin injection and then declined, whereas specific activity of the plasma membranes dropped precipitously to 25% of peak values at 5 min. Sephadex gel filtration of the radioactivity in the deoxycholate soluble fraction of microsomes at 5 min after 125I-labeled insulin injection resulted in the elution of a major peak (Peak I) in the region of 125I-labeled insulin and a minor peak (Peak II) in the region of the labeled A and B chains. Incubation of the fraction for 30 min at 37 °C with 3 m m reduced glutathione and 15 m m EDTA resulted in a reciprocal fall in Peak I and rise in Peak II. The data suggest that intraportally injected 125I-labeled insulin is rapidly internalized and concentrated in the rat liver microsomes. The time courses of appearance and disappearance of trichloroacetic acid precipitable radioactivity in plasma membrane and microsomes further suggest, although do not prove, that insulin binds to plasma membranes before it is internalized. They also provide presumptive evidence suggesting that the sequential degradative pathway is operative in vivo.