We studied whether, in parallel to the activity of the hypothalamus-pituitary-adrenal axis and the sympathetic nervous system, hypothalamic cytokine expression and monoaminergic neurotransmitter concentrations are affected during the development and chronification of arthritis induced by immunization of rats with type II collagen. Corticosterone levels were increased only transiently, and were even below the normal range as the disease progressed. Increased adrenaline blood levels and hypothalamic IL-1β and IL-6 overexpression were observed only during the induction phase of the disease. The increase in hypothalamic noradrenaline content during the symptomatic phase was paralleled by a gradual loss of sympathetic fibers in the joints. Depletion of hypothalamic noradrenergic neurons at this time did not affect the symptomatology. Contrary to observations in healthy animals, no correlation between hypothalamic IL-1β expression and noradrenaline content was observed in rats with arthritis. The dissociation between hypothalamic cytokine gene expression and noradrenergic neuronal activity, the lack of sustained stimulation of the stress axes, and the loss of sympathetic signals in the joints indicate that the communication between afferent immune messages to the central nervous system and two main efferent anti-inflammatory pathways under control of the brain are disrupted during experimental arthritis.