Tea leaf spot caused by Lasiodiplodia theobromae is a newly discovered fungal disease in southwest China. Due to a lack of knowledge of its epidemiology and control strategies, the disease has a marked impact on tea yield and quality. Pyriofenone is a new fungicide belonging to the aryl phenyl ketone fungicide group, which has shown marked efficacy in controlling various fungal diseases. However, its mechanism of action is not yet understood. This study found that pyriofenone exhibits strong in vitro inhibitory activity against various phytopathogenic fungi. Specifically, it showed strong inhibitory activity against L. theobromae, with a half-maximal effective concentration (EC50) value of 0.428 μg/ml determined by measuring mycelial growth rate. Morphological observations, using optical, scanning electron, and transmission electron microscopy, revealed that pyriofenone induces morphological abnormalities in L. theobromae hyphae. At lower doses, the hyphae became swollen, the distance between septa decreased, and the hyphal growth rate slowed. At higher doses and longer exposures, the hyphae collapsed. Transcriptomic and bioinformatic analyses indicated that pyriofenone can affect the expression of genes related to membrane transporters. Homology modeling suggested that pyriofenone may bind to a candidate target protein of the major facilitator superfamily (MFS) transporter, with a free binding energy of -7.1 kcal/mol. This study suggests that pyriofenone may potentially regulate the transport of metabolites in L. theobromae, thus affecting hyphal metabolism and interfering with hyphal growth. Pyriofenone exhibits in vitro inhibitory activity against various tea foliar pathogens and holds promise for future applications to the control of tea foliar diseases.
Read full abstract