Subspace clustering supposes that hyperspectral image (HSI) pixels lie in a union vector spaces of multiple sample subspaces without considering their dual space, i.e., spectral space. In this article, we propose a promising dual subspace clustering (DualSC) for improving spectral-spatial HSIs clustering by relaxing subspace clustering. To this end, DualSC simultaneously optimizes row and column subspace-representations of HSI superpixels to capture the intrinsic connection between spectral and spatial information. From the new perspective, the original subspace clustering can be treated as a special case of DualSC that has larger solution space, so tends to finding better sample representation matrix for applying spectral clustering. Besides, we provide theoretical proofs that show the proposed method relaxes the subspace space clustering with dual subspace, and can recover subspace-sparse representation of HSI samples. To the best of our knowledge, this work could be one of the first dual clustering method leveraging sample and spectral subspaces simultaneously. As a result, we conduct several clustering experiments on four canonical data sets, implying that our proposed method with strong interpretability reaches comparable performance and computing efficiency with other state-of-the-art methods.