Peritoneal dialysis (PD) is a renal replacement therapy consistent on the administration and posterior recovery of a hyperosmotic fluid in the peritoneal cavity to drain water and toxic metabolites that functionally-insufficient kidneys are not able to eliminate. Unfortunately, this procedure deteriorates the peritoneum. Tissue damage triggers the onset of inflammation to heal the injury. If the injury persists and inflammation becomes chronic, it may lead to fibrosis, which is a common occurrence in many diseases. In PD, chronic inflammation and fibrosis, along with other specific processes related to these ones, lead to ultrafiltration capacity deterioration, which means the failure and subsequent cessation of the technique. Working with human samples provides information about this deterioration but presents technical and ethical limitations to obtain biopsies. Animal models are essential to study this deterioration since they overcome these shortcomings. A chronic mouse infusion model was developed in 2008, which benefits from the wide range of genetically modified mice, opening up the possibility of studying the mechanisms involved. This model employs a customized device designed for mice, consisting of a catheter attached to an access port that is placed subcutaneously at the back of the animal. This procedure avoids continuous puncture of the peritoneum during long-term experiments, reducing infections and inflammation due to injections. Thanks to this model, peritoneal damage induced by chronic PD fluid exposure has been characterized and modulated. This technique allows the infusion of large volumes of fluids and could be used for the study of other diseases in which inoculation of drugs or other substances over extended periods of time is necessary. This article shows the method for the surgical placement of the catheter in mice. Moreover, it explains the procedure for a 5/6 nephrectomy to mimic the state of renal insufficiency present in PD patients.
Read full abstract