Modeling the long-tailedness property of network traffic with phase-type distributions is a powerful means to facilitate the consequent performance evaluation and queuing based analysis. This paper improves the recently proposed Fixed Hyper-Erlang model (FHE) by introducing an adaptive framework (Adaptive Hyper-Erlang model, AHE) to determine the crucially performance-sensitive model parameters. The adaptive model fits long-tailed traffic data set directly with a mixed Erlang distribution in a new divide-and-conquer manner. Compared with the well-known hyperexponential based models and the Fixed Hyper-Erlang model, the Adaptive Hyper-Erlang model is more flexible and practicable in addition to its accuracy in fitting the tail behavior.