Acute myeloid leukemia (AML) is an aggressive cancer with complex issues of drug resistance and a poor prognosis; thus, effective therapeutics is urgently needed for AML. In this study, we designed and synthesized dual cyclooxygenase-2 (COX-2) and histone deacetylase (HDAC) inhibitors, IMC-HA and IMC-OPD, and applied them for the treatment of AML. IMC-HA comprised a COX-2 inhibitor skeleton of indomethacin (IMC) and an HDAC inhibitor moiety of the hydroxamic group and was found to exhibit potent antiproliferative activity against AML cells (THP-1 and U937) and low cytotoxicity toward normal cells. Molecular docking simulations suggested that IMC-HA had a high binding affinity for HDAC and COX-2, with binding energies of -6.8 and -9.0kcal/mol, respectively. Mechanistic studies revealed that IMC-HA induced apoptosis and G0/G1 phase arrest in AML cells, which were characterized by alterations in the expression of apoptotic and cell cycle-related proteins. Further study demonstrated that IMC-HA also inhibited the MEK/ERK signaling pathway in AML cells. Overall, we believe that IMC-HA could serve as a potent COX-2/HDAC dual inhibitor and improve the treatment of AML.
Read full abstract