Ability to deliver drugs into the cell nuclei can significantly increase the efficacy of cancer therapies, in particular in the case of multidrug-resistant cancer Results: Polymer nanocarriers based on amphiphilic thiooctadecyl-terminated poly-N-vinyl-2-pyrrolidone were produced and loaded with a model hydrophobic drug,curcumin. Two commonly used loading approaches - emulsification and ultrasonic dispersion - were found to lead to two different size distributions with distinctively different biological effect. While nanocarriers produced via the emulsion method penetrated cells by dynamin-dependent endocytic mechanisms, sub-100 nm dispersion-produced nanocarriers were capable of crossing the membranes via biologically independent mechanisms. This finding opens an intriguing possibility of intranuclear delivery by merely tailoring the size of polymeric carriers, thus promising a new approach for cancer therapies.