India generates 126.6 and 42 million tons of Rice straw (RS) and Rice husk (RH) annually, respectively. These agro-processing wastes feedstock are dumped in landfills or burnt, releasing toxic gases and particulate matter into the environment. This paper explores the valorization of these wastes feedstock into sustainable, economic products. We compare these wastes as matrices for lipase immobilization. These matrices were characterized, different parameters (pH, temperature, ionic strength, and metal ion cofactors) were checked, and the selected matrix was analyzed for reusability and hydrolysis of vegetable oils. Lipase immobilized Rice straw (LIRS) showed the highest activity with 72.84% protein loading. Field emission scanning electron microscopy (FESEM) demonstrated morphological changes after enzyme immobilization. FTIR showed no new bond formation, and immobilization data was fitted to Freundlich adsorption isotherm (with K = 12.18 mg/g, nF = 4.5). The highest activity with protein loading, 91.05%, was observed at pH 8, 37 °C temperature, 50 mM ionic strength, and lipase activity doubled in the presence of Mg2+ ions. The LIRS retained 75% of its initial activity up to five cycles and efficiently hydrolyzed different oils. The results reflected that the LIRS system performs better and can be used to degrade oily waste.
Read full abstract