This study used dual stable isotopes to examine nitrate sources and geographical distribution in the Liao River Basin (LRB), one of China's seven major river basins. During a normal hydrological season in April 2021, water samples were taken from the main streams of the Liao River (MLR), Shuangtaizi River (STR), Hun River (HR), Taizi River (TZR), and Daliao River (DLR). Monitoring results indicated that 93% of the water samples had a total nitrogen level exceeding the Class IV limit (1.5 mg/L) of the ‘Environmental Quality Standards (EQS) for surface water’, indicating a serious nitrogen pollution status. 71.3% of the total nitrogen on average was in the form of nitrate. The scatterplots of δD-H2O and δ18O-H2O showed that water in TZR and DLR were mainly affected by precipitation, while MLR, STR and HR were additionally impacted by evaporation and groundwater. The overall δ15N and δ18O of NO3− varied from 7.7‰ to 17.9‰ and 0.6‰–11.2‰, respectively. The correlations between δ15N-NO3- and δ18O-NO3-, along with attribution results from the Bayesian isotopic mixing model, indicated a predominant role of manure/sewage (MS) pollution in affecting river nitrate, accounting for 78% of total nitrate in MLR and 72% in DLR. A positive correlation between δ15N-NO3- and δ18O-NO3- in MLR indicated the occurrence of denitrification process. Overall, attribution results showed that the primary nitrate sources varied in different river systems within such a large basin, mainly due to spatially varied land use and human activities. Tailored nitrogen management strategies should be implemented to address the main anthropogenic pressures.
Read full abstract