Due to the complex wound microenvironment, diabetic wound repairing remains as an important clinical problem caused by excessive ROS, bacterial infection and persistent inflammation. In this study, gallic acid (GA) was grafted onto the P(NIPAM-co-AH) copolymers to synthesize functional copolymer with hydrazide functional group and GA moiety (PNHG). Then the PNHG was cross-linked by sodium alginate oxide (OSA) to fabricate self-healing hydrogel with multifunctionalility of tissue adhesion, ROS scavenging, biodegradability and antibacterial property. The multifunctional hydrogel showed expected advantages proved the GA enhanced the ROS scavenging property, tissue adhesion and antibacterial activity. Moreover, the hydrogel preserved the biocompatibility and the biodegradability of the precursors. Furthermore, the multifunctional hydrogel showed improved hemostatic property and greatly promoted repairing rate of diabetic wounds on mice model in vivo. In conclusion, this multifunctional PNHG/OSA hydrogel can play a important role as wound dressing in the future.